Anwendungsfall

/

Code-Wartung

Leistung optimieren

Modell

Claude 3.7 Sonett

Optimieren Sie eine Node.js Express-API für die Verarbeitung von 1.000 RPS: Schlagen Sie anhand von Codebeispielen Verbesserungen bei DB-Indizierung, Caching und asynchroner Verarbeitung vor.

Query ausprobieren
Claude 3.7 Sonett
/
Programmierer

Optimierung einer Node.js Express-API für 1.000 RPS

Um 1.000 Anfragen pro Sekunde (RPS) in einer Node.js Express-API zu verarbeiten, müssen Sie sich auf mehrere wichtige Optimierungsbereiche konzentrieren. Hier ist ein umfassender Ansatz:

1. Datenbank-Indizierung

Eine korrekte Datenbankindizierung ist für leistungsstarke APIs von entscheidender Bedeutung.

MongoDB-Beispiel:

1// Create indexes for frequently queried fields
2const mongoose = require('mongoose');
3const userSchema = new mongoose.Schema({
4  email: String,
5  username: String,
6  createdAt: Date
7});
8
9// Create single field indexes
10userSchema.index({ email: 1 });
11userSchema.index({ username: 1 });
12
13// Create compound index for queries that filter on multiple fields
14userSchema.index({ createdAt: -1, username: 1 });
15
16// Create text index for search functionality
17userSchema.index({ username: 'text', email: 'text' });
18
19const User = mongoose.model('User', userSchema);

SQL-Beispiel (mit Sequelize):

1const User = sequelize.define('User', {
2  email: DataTypes.STRING,
3  username: DataTypes.STRING,
4  createdAt: DataTypes.DATE
5});
6
7// After defining models, create indexes
8(async () => {
9  await sequelize.sync();
10  // Create indexes
11  await sequelize.query('CREATE INDEX idx_users_email ON Users(email)');
12  await sequelize.query('CREATE INDEX idx_users_username ON Users(username)');
13  await sequelize.query('CREATE INDEX idx_users_created_at ON Users(createdAt)');
14})();

2. Implementierung des Cachings

Redis-Caching:

1const express = require('express');
2const redis = require('redis');
3const { promisify } = require('util');
4const app = express();
5
6// Create Redis client
7const redisClient = redis.createClient({
8  host: process.env.REDIS_HOST || 'localhost',
9  port: process.env.REDIS_PORT || 6379
10});
11
12// Promisify Redis get and set methods
13const getAsync = promisify(redisClient.get).bind(redisClient);
14const setAsync = promisify(redisClient.set).bind(redisClient);
15
16// Middleware for caching
17const cacheMiddleware = (duration) => async (req, res, next) => {
18  const key = `api:${req.originalUrl}`;
19  
20  try {
21    const cachedData = await getAsync(key);
22    
23    if (cachedData) {
24      return res.json(JSON.parse(cachedData));
25    }
26    
27    // Store original send function
28    const originalSend = res.send;
29    
30    // Override send
31    res.send = function(body) {
32      setAsync(key, body, 'EX', duration);
33      return originalSend.call(this, body);
34    };
35    
36    next();
37  } catch (err) {
38    console.error('Cache error:', err);
39    next();
40  }
41};
42
43// Apply cache middleware to routes
44app.get('/api/users', cacheMiddleware(60), async (req, res) => {
45  // Database query here
46  const users = await User.find();
47  res.json(users);
48});

In-Memory-Caching mit Node-Cache:

1const NodeCache = require('node-cache');
2const cache = new NodeCache({ stdTTL: 60 }); // Default TTL: 60 seconds
3
4// Cache middleware
5function cacheMiddleware(key, ttl) {
6  return (req, res, next) => {
7    const cacheKey = key || req.originalUrl;
8    const cachedResponse = cache.get(cacheKey);
9    
10    if (cachedResponse) {
11      return res.json(cachedResponse);
12    }
13    
14    const originalJson = res.json;
15    res.json = function(data) {
16      cache.set(cacheKey, data, ttl || 60);
17      originalJson.call(this, data);
18    };
19    
20    next();
21  };
22}
23
24// Usage
25app.get('/api/products', cacheMiddleware('products', 300), async (req, res) => {
26  const products = await Product.find();
27  res.json(products);
28});

3. Asynchrone Verarbeitung

Bull Queue für Hintergrundjobs verwenden:

1const Queue = require('bull');
2const express = require('express');
3const app = express();
4
5// Create processing queue
6const emailQueue = new Queue('email-sending', {
7  redis: {
8    host: process.env.REDIS_HOST || 'localhost',
9    port: process.env.REDIS_PORT || 6379
10  }
11});
12
13// API endpoint that offloads work to the queue
14app.post('/api/users', async (req, res) => {
15  try {
16    // Save user to database
17    const user = await User.create(req.body);
18    
19    // Add welcome email job to queue instead of sending it synchronously
20    await emailQueue.add({
21      to: user.email,
22      subject: 'Welcome!',
23      template: 'welcome',
24      userId: user.id
25    }, {
26      attempts: 3,
27      backoff: {
28        type: 'exponential',
29        delay: 1000
30      }
31    });
32    
33    // Respond immediately without waiting for email
34    res.status(201).json(user);
35  } catch (err) {
36    res.status(500).json({ error: err.message });
37  }
38});
39
40// Process queue in a separate process
41emailQueue.process(async (job) => {
42  const { to, subject, template, userId } = job.data;
43  // Send email logic here
44  await sendEmail(to, subject, template, { userId });
45  return { sent: true };
46});
47
48// Handle queue events
49emailQueue.on('completed', job => {
50  console.log(`Job ${job.id} completed`);
51});
52
53emailQueue.on('failed', (job, err) => {
54  console.error(`Job ${job.id} failed with error: ${err.message}`);
55});

4. Server-Optimierung

Cluster-Modus:

1const cluster = require('cluster');
2const os = require('os');
3const express = require('express');
4
5if (cluster.isMaster) {
6  // Get the number of available CPU cores
7  const numCPUs = os.cpus().length;
8  
9  console.log(`Master process running. Forking ${numCPUs} workers`);
10  
11  // Fork workers for each available CPU
12  for (let i = 0; i < numCPUs; i++) {
13    cluster.fork();
14  }
15  
16  // Handle worker crashes
17  cluster.on('exit', (worker, code, signal) => {
18    console.log(`Worker ${worker.process.pid} died. Restarting...`);
19    cluster.fork();
20  });
21} else {
22  // Worker processes share the same port
23  const app = express();
24  
25  // Your Express routes and middleware here
26  app.get('/', (req, res) => {
27    res.send('Hello from worker ' + process.pid);
28  });
29  
30  const PORT = process.env.PORT || 3000;
31  app.listen(PORT, () => {
32    console.log(`Worker ${process.pid} started and listening on port ${PORT}`);
33  });
34}

Mit PM2:

1// app.js - Your Express application
2const express = require('express');
3const app = express();
4
5// Routes and middleware here
6
7const PORT = process.env.PORT || 3000;
8app.listen(PORT, () => {
9  console.log(`Server running on port ${PORT}`);
10});
11
12// ecosystem.config.js - PM2 configuration
13module.exports = {
14  apps: [{
15    name: "api-server",
16    script: "./app.js",
17    instances: "max", // Use all available CPUs
18    exec_mode: "cluster",
19    watch: false,
20    max_memory_restart: "1G",
21    env: {
22      NODE_ENV: "production",
23      PORT: 3000
24    }
25  }]
26};
27
28// Run with: pm2 start ecosystem.config.js

5. Komprimierung der Antwort

1const express = require('express');
2const compression = require('compression');
3const app = express();
4
5// Add compression middleware
6app.use(compression({
7  level: 6, // Default compression level
8  threshold: 1024, // Only compress responses larger than 1KB
9  filter: (req, res) => {
10    // Don't compress responses with this header
11    if (req.headers['x-no-compression']) {
12      return false;
13    }
14    // Use compression filter function from the module
15    return compression.filter(req, res);
16  }
17}));
18
19// Your routes here

6. Verbindungspooling

1// For MongoDB with Mongoose
2mongoose.connect('mongodb://localhost/myapp', {
3  poolSize: 10, // Maintain up to 10 socket connections
4  serverSelectionTimeoutMS: 5000,
5  socketTimeoutMS: 45000
6});
7
8// For PostgreSQL with pg
9const { Pool } = require('pg');
10const pool = new Pool({
11  host: 'localhost',
12  database: 'myapp',
13  user: 'postgres',
14  password: 'password',
15  max: 20, // Maximum number of clients in the pool
16  idleTimeoutMillis: 30000,
17  connectionTimeoutMillis: 2000
18});
19
20// Use the pool in your routes
21app.get('/api/data', async (req, res) => {
22  const client = await pool.connect();
23  try {
24    const result = await client.query('SELECT * FROM items');
25    res.json(result.rows);
26  } finally {
27    client.release(); // Return client to pool
28  }
29});

7. Ratenbegrenzung

1const rateLimit = require('express-rate-limit');
2
3// Create rate limiter
4const apiLimiter = rateLimit({
5  windowMs: 15 * 60 * 1000, // 15 minutes
6  max: 100, // Limit each IP to 100 requests per windowMs
7  standardHeaders: true, // Return rate limit info in the `RateLimit-*` headers
8  legacyHeaders: false, // Disable the `X-RateLimit-*` headers
9  message: 'Too many requests from this IP, please try again after 15 minutes'
10});
11
12// Apply rate limiting to all API routes
13app.use('/api/', apiLimiter);
14
15// Different limits for specific endpoints
16const createAccountLimiter = rateLimit({
17  windowMs: 60 * 60 * 1000, // 1 hour
18  max: 5, // 5 accounts per hour per IP
19  message: 'Too many accounts created from this IP, please try again after an hour'
20});
21
22app.post('/api/create-account', createAccountLimiter, (req, res) => {
23  // Create account logic
24});

8. Überwachung und Leistungsoptimierung

1const express = require('express');
2const responseTime = require('response-time');
3const app = express();
4
5// Add response time header
6app.use(responseTime());
7
8// Basic request logging
9app.use((req, res, next) => {
10  const start = Date.now();
11  
12  res.on('finish', () => {
13    const duration = Date.now() - start;
14    console.log(`${req.method} ${req.originalUrl} ${res.statusCode} ${duration}ms`);
15  });
16  
17  next();
18});
19
20// For more advanced monitoring, consider using:
21// - Prometheus + Grafana
22// - New Relic
23// - Datadog

Durch die Implementierung dieser Optimierungen sollte Ihre Node.js Express-API gut gerüstet sein, um 1.000 RPS zu verarbeiten. Denken Sie daran:

  1. Profilieren Sie Ihre Bewerbung, um Engpässe zu identifizieren
  2. Implementieren Sie Caching strategisch für Daten, auf die häufig zugegriffen wird
  3. Verwenden Sie Datenbankindizes für allgemeine Abfragemuster
  4. Verlagern Sie CPU-intensive Aufgaben an Mitarbeiter im Hintergrund
  5. Horizontale Skalierung mithilfe von Clustering oder Container-Orchestrierung
  6. Überwachen Sie die Leistung in der Produktion, um sie kontinuierlich zu optimieren

Erkunden Sie verwandte Anwendungsfälle

Erlebe Ninjas KI-Assistenten

Testen Sie es noch heute kostenlos. Pläne ab 19 USD/Monat.