Cas d'utilisation

/

Maintenance du code

Optimisez les performances

modèle

Claude 3.7 Sonnet

Optimisez une API Node.js Express pour gérer 1 000 RPS : suggérez des améliorations en matière d'indexation de base de données, de mise en cache et de traitement asynchrone à l'aide d'exemples de code.

Essayez Query
Claude 3.7 Sonnet
/
codeur

Optimisation d'une API Node.js Express pour 1 000 RPS

Pour gérer 1 000 requêtes par seconde (RPS) dans une API Node.js Express, vous devez vous concentrer sur plusieurs domaines d'optimisation clés. Voici une approche globale :

1. Indexation de bases de données

Une indexation correcte des bases de données est cruciale pour les API hautes performances.

Exemple MongoDB :

1// Create indexes for frequently queried fields
2const mongoose = require('mongoose');
3const userSchema = new mongoose.Schema({
4  email: String,
5  username: String,
6  createdAt: Date
7});
8
9// Create single field indexes
10userSchema.index({ email: 1 });
11userSchema.index({ username: 1 });
12
13// Create compound index for queries that filter on multiple fields
14userSchema.index({ createdAt: -1, username: 1 });
15
16// Create text index for search functionality
17userSchema.index({ username: 'text', email: 'text' });
18
19const User = mongoose.model('User', userSchema);

Exemple SQL (à l'aide de Sequelize) :

1const User = sequelize.define('User', {
2  email: DataTypes.STRING,
3  username: DataTypes.STRING,
4  createdAt: DataTypes.DATE
5});
6
7// After defining models, create indexes
8(async () => {
9  await sequelize.sync();
10  // Create indexes
11  await sequelize.query('CREATE INDEX idx_users_email ON Users(email)');
12  await sequelize.query('CREATE INDEX idx_users_username ON Users(username)');
13  await sequelize.query('CREATE INDEX idx_users_created_at ON Users(createdAt)');
14})();

2. Implémentation du cache

Mise en cache Redis :

1const express = require('express');
2const redis = require('redis');
3const { promisify } = require('util');
4const app = express();
5
6// Create Redis client
7const redisClient = redis.createClient({
8  host: process.env.REDIS_HOST || 'localhost',
9  port: process.env.REDIS_PORT || 6379
10});
11
12// Promisify Redis get and set methods
13const getAsync = promisify(redisClient.get).bind(redisClient);
14const setAsync = promisify(redisClient.set).bind(redisClient);
15
16// Middleware for caching
17const cacheMiddleware = (duration) => async (req, res, next) => {
18  const key = `api:${req.originalUrl}`;
19  
20  try {
21    const cachedData = await getAsync(key);
22    
23    if (cachedData) {
24      return res.json(JSON.parse(cachedData));
25    }
26    
27    // Store original send function
28    const originalSend = res.send;
29    
30    // Override send
31    res.send = function(body) {
32      setAsync(key, body, 'EX', duration);
33      return originalSend.call(this, body);
34    };
35    
36    next();
37  } catch (err) {
38    console.error('Cache error:', err);
39    next();
40  }
41};
42
43// Apply cache middleware to routes
44app.get('/api/users', cacheMiddleware(60), async (req, res) => {
45  // Database query here
46  const users = await User.find();
47  res.json(users);
48});

Mise en cache en mémoire avec Node-Cache :

1const NodeCache = require('node-cache');
2const cache = new NodeCache({ stdTTL: 60 }); // Default TTL: 60 seconds
3
4// Cache middleware
5function cacheMiddleware(key, ttl) {
6  return (req, res, next) => {
7    const cacheKey = key || req.originalUrl;
8    const cachedResponse = cache.get(cacheKey);
9    
10    if (cachedResponse) {
11      return res.json(cachedResponse);
12    }
13    
14    const originalJson = res.json;
15    res.json = function(data) {
16      cache.set(cacheKey, data, ttl || 60);
17      originalJson.call(this, data);
18    };
19    
20    next();
21  };
22}
23
24// Usage
25app.get('/api/products', cacheMiddleware('products', 300), async (req, res) => {
26  const products = await Product.find();
27  res.json(products);
28});

3. Traitement asynchrone

Utilisation de Bull Queue pour les tâches en arrière-plan :

1const Queue = require('bull');
2const express = require('express');
3const app = express();
4
5// Create processing queue
6const emailQueue = new Queue('email-sending', {
7  redis: {
8    host: process.env.REDIS_HOST || 'localhost',
9    port: process.env.REDIS_PORT || 6379
10  }
11});
12
13// API endpoint that offloads work to the queue
14app.post('/api/users', async (req, res) => {
15  try {
16    // Save user to database
17    const user = await User.create(req.body);
18    
19    // Add welcome email job to queue instead of sending it synchronously
20    await emailQueue.add({
21      to: user.email,
22      subject: 'Welcome!',
23      template: 'welcome',
24      userId: user.id
25    }, {
26      attempts: 3,
27      backoff: {
28        type: 'exponential',
29        delay: 1000
30      }
31    });
32    
33    // Respond immediately without waiting for email
34    res.status(201).json(user);
35  } catch (err) {
36    res.status(500).json({ error: err.message });
37  }
38});
39
40// Process queue in a separate process
41emailQueue.process(async (job) => {
42  const { to, subject, template, userId } = job.data;
43  // Send email logic here
44  await sendEmail(to, subject, template, { userId });
45  return { sent: true };
46});
47
48// Handle queue events
49emailQueue.on('completed', job => {
50  console.log(`Job ${job.id} completed`);
51});
52
53emailQueue.on('failed', (job, err) => {
54  console.error(`Job ${job.id} failed with error: ${err.message}`);
55});

4. Optimisation des serveurs

Mode cluster :

1const cluster = require('cluster');
2const os = require('os');
3const express = require('express');
4
5if (cluster.isMaster) {
6  // Get the number of available CPU cores
7  const numCPUs = os.cpus().length;
8  
9  console.log(`Master process running. Forking ${numCPUs} workers`);
10  
11  // Fork workers for each available CPU
12  for (let i = 0; i < numCPUs; i++) {
13    cluster.fork();
14  }
15  
16  // Handle worker crashes
17  cluster.on('exit', (worker, code, signal) => {
18    console.log(`Worker ${worker.process.pid} died. Restarting...`);
19    cluster.fork();
20  });
21} else {
22  // Worker processes share the same port
23  const app = express();
24  
25  // Your Express routes and middleware here
26  app.get('/', (req, res) => {
27    res.send('Hello from worker ' + process.pid);
28  });
29  
30  const PORT = process.env.PORT || 3000;
31  app.listen(PORT, () => {
32    console.log(`Worker ${process.pid} started and listening on port ${PORT}`);
33  });
34}

À l'aide de PM2 :

1// app.js - Your Express application
2const express = require('express');
3const app = express();
4
5// Routes and middleware here
6
7const PORT = process.env.PORT || 3000;
8app.listen(PORT, () => {
9  console.log(`Server running on port ${PORT}`);
10});
11
12// ecosystem.config.js - PM2 configuration
13module.exports = {
14  apps: [{
15    name: "api-server",
16    script: "./app.js",
17    instances: "max", // Use all available CPUs
18    exec_mode: "cluster",
19    watch: false,
20    max_memory_restart: "1G",
21    env: {
22      NODE_ENV: "production",
23      PORT: 3000
24    }
25  }]
26};
27
28// Run with: pm2 start ecosystem.config.js

5. Compression de la réponse

1const express = require('express');
2const compression = require('compression');
3const app = express();
4
5// Add compression middleware
6app.use(compression({
7  level: 6, // Default compression level
8  threshold: 1024, // Only compress responses larger than 1KB
9  filter: (req, res) => {
10    // Don't compress responses with this header
11    if (req.headers['x-no-compression']) {
12      return false;
13    }
14    // Use compression filter function from the module
15    return compression.filter(req, res);
16  }
17}));
18
19// Your routes here

6. Regroupement de connexions

1// For MongoDB with Mongoose
2mongoose.connect('mongodb://localhost/myapp', {
3  poolSize: 10, // Maintain up to 10 socket connections
4  serverSelectionTimeoutMS: 5000,
5  socketTimeoutMS: 45000
6});
7
8// For PostgreSQL with pg
9const { Pool } = require('pg');
10const pool = new Pool({
11  host: 'localhost',
12  database: 'myapp',
13  user: 'postgres',
14  password: 'password',
15  max: 20, // Maximum number of clients in the pool
16  idleTimeoutMillis: 30000,
17  connectionTimeoutMillis: 2000
18});
19
20// Use the pool in your routes
21app.get('/api/data', async (req, res) => {
22  const client = await pool.connect();
23  try {
24    const result = await client.query('SELECT * FROM items');
25    res.json(result.rows);
26  } finally {
27    client.release(); // Return client to pool
28  }
29});

7. Limitation de débit

1const rateLimit = require('express-rate-limit');
2
3// Create rate limiter
4const apiLimiter = rateLimit({
5  windowMs: 15 * 60 * 1000, // 15 minutes
6  max: 100, // Limit each IP to 100 requests per windowMs
7  standardHeaders: true, // Return rate limit info in the `RateLimit-*` headers
8  legacyHeaders: false, // Disable the `X-RateLimit-*` headers
9  message: 'Too many requests from this IP, please try again after 15 minutes'
10});
11
12// Apply rate limiting to all API routes
13app.use('/api/', apiLimiter);
14
15// Different limits for specific endpoints
16const createAccountLimiter = rateLimit({
17  windowMs: 60 * 60 * 1000, // 1 hour
18  max: 5, // 5 accounts per hour per IP
19  message: 'Too many accounts created from this IP, please try again after an hour'
20});
21
22app.post('/api/create-account', createAccountLimiter, (req, res) => {
23  // Create account logic
24});

8. Surveillance et réglage des performances

1const express = require('express');
2const responseTime = require('response-time');
3const app = express();
4
5// Add response time header
6app.use(responseTime());
7
8// Basic request logging
9app.use((req, res, next) => {
10  const start = Date.now();
11  
12  res.on('finish', () => {
13    const duration = Date.now() - start;
14    console.log(`${req.method} ${req.originalUrl} ${res.statusCode} ${duration}ms`);
15  });
16  
17  next();
18});
19
20// For more advanced monitoring, consider using:
21// - Prometheus + Grafana
22// - New Relic
23// - Datadog

En mettant en œuvre ces optimisations, votre API Node.js Express devrait être bien équipée pour gérer 1 000 RPS. N'oubliez pas de :

  1. Profilez votre application pour identifier les goulots d'étranglement
  2. Implémentez la mise en cache de manière stratégique pour les données fréquemment consultées
  3. Utiliser les index de base de données pour les modèles de requêtes courants
  4. Transférez les tâches gourmandes en ressources processeur à des travailleurs en arrière-plan
  5. Mise à l'échelle horizontale à l'aide du clustering ou de l'orchestration de conteneurs
  6. Surveillez les performances de production pour les optimiser en permanence

Découvrez l'assistant IA de Ninja

Essayez gratuitement dès aujourd'hui. Forfaits à partir de 19$ par mois.