Caso de uso

/

Manutenção de código

Otimize o desempenho

modelo

Cláusula 3.7 Soneto

Otimize uma API Node.js Express para lidar com 1.000 RPS: sugira melhorias na indexação de banco de dados, armazenamento em cache e processamento assíncrono com amostras de código.

Experimente o Query
Cláusula 3.7 Soneto
/
codificador

Otimizando uma API Node.js Express para 1.000 RPS

Para lidar com 1.000 solicitações por segundo (RPS) em uma API Node.js Express, você precisa se concentrar em várias áreas importantes de otimização. Aqui está uma abordagem abrangente:

1. Indexação de banco de dados

A indexação adequada do banco de dados é crucial para APIs de alto desempenho.

Exemplo do MongoDB:

1// Create indexes for frequently queried fields
2const mongoose = require('mongoose');
3const userSchema = new mongoose.Schema({
4  email: String,
5  username: String,
6  createdAt: Date
7});
8
9// Create single field indexes
10userSchema.index({ email: 1 });
11userSchema.index({ username: 1 });
12
13// Create compound index for queries that filter on multiple fields
14userSchema.index({ createdAt: -1, username: 1 });
15
16// Create text index for search functionality
17userSchema.index({ username: 'text', email: 'text' });
18
19const User = mongoose.model('User', userSchema);

Exemplo de SQL (usando Sequelize):

1const User = sequelize.define('User', {
2  email: DataTypes.STRING,
3  username: DataTypes.STRING,
4  createdAt: DataTypes.DATE
5});
6
7// After defining models, create indexes
8(async () => {
9  await sequelize.sync();
10  // Create indexes
11  await sequelize.query('CREATE INDEX idx_users_email ON Users(email)');
12  await sequelize.query('CREATE INDEX idx_users_username ON Users(username)');
13  await sequelize.query('CREATE INDEX idx_users_created_at ON Users(createdAt)');
14})();

2. Implementação de cache

Cache Redis:

1const express = require('express');
2const redis = require('redis');
3const { promisify } = require('util');
4const app = express();
5
6// Create Redis client
7const redisClient = redis.createClient({
8  host: process.env.REDIS_HOST || 'localhost',
9  port: process.env.REDIS_PORT || 6379
10});
11
12// Promisify Redis get and set methods
13const getAsync = promisify(redisClient.get).bind(redisClient);
14const setAsync = promisify(redisClient.set).bind(redisClient);
15
16// Middleware for caching
17const cacheMiddleware = (duration) => async (req, res, next) => {
18  const key = `api:${req.originalUrl}`;
19  
20  try {
21    const cachedData = await getAsync(key);
22    
23    if (cachedData) {
24      return res.json(JSON.parse(cachedData));
25    }
26    
27    // Store original send function
28    const originalSend = res.send;
29    
30    // Override send
31    res.send = function(body) {
32      setAsync(key, body, 'EX', duration);
33      return originalSend.call(this, body);
34    };
35    
36    next();
37  } catch (err) {
38    console.error('Cache error:', err);
39    next();
40  }
41};
42
43// Apply cache middleware to routes
44app.get('/api/users', cacheMiddleware(60), async (req, res) => {
45  // Database query here
46  const users = await User.find();
47  res.json(users);
48});

Cache na memória com Node-Cache:

1const NodeCache = require('node-cache');
2const cache = new NodeCache({ stdTTL: 60 }); // Default TTL: 60 seconds
3
4// Cache middleware
5function cacheMiddleware(key, ttl) {
6  return (req, res, next) => {
7    const cacheKey = key || req.originalUrl;
8    const cachedResponse = cache.get(cacheKey);
9    
10    if (cachedResponse) {
11      return res.json(cachedResponse);
12    }
13    
14    const originalJson = res.json;
15    res.json = function(data) {
16      cache.set(cacheKey, data, ttl || 60);
17      originalJson.call(this, data);
18    };
19    
20    next();
21  };
22}
23
24// Usage
25app.get('/api/products', cacheMiddleware('products', 300), async (req, res) => {
26  const products = await Product.find();
27  res.json(products);
28});

3. Processamento assíncrono

Usando o Bull Queue para trabalhos em segundo plano:

1const Queue = require('bull');
2const express = require('express');
3const app = express();
4
5// Create processing queue
6const emailQueue = new Queue('email-sending', {
7  redis: {
8    host: process.env.REDIS_HOST || 'localhost',
9    port: process.env.REDIS_PORT || 6379
10  }
11});
12
13// API endpoint that offloads work to the queue
14app.post('/api/users', async (req, res) => {
15  try {
16    // Save user to database
17    const user = await User.create(req.body);
18    
19    // Add welcome email job to queue instead of sending it synchronously
20    await emailQueue.add({
21      to: user.email,
22      subject: 'Welcome!',
23      template: 'welcome',
24      userId: user.id
25    }, {
26      attempts: 3,
27      backoff: {
28        type: 'exponential',
29        delay: 1000
30      }
31    });
32    
33    // Respond immediately without waiting for email
34    res.status(201).json(user);
35  } catch (err) {
36    res.status(500).json({ error: err.message });
37  }
38});
39
40// Process queue in a separate process
41emailQueue.process(async (job) => {
42  const { to, subject, template, userId } = job.data;
43  // Send email logic here
44  await sendEmail(to, subject, template, { userId });
45  return { sent: true };
46});
47
48// Handle queue events
49emailQueue.on('completed', job => {
50  console.log(`Job ${job.id} completed`);
51});
52
53emailQueue.on('failed', (job, err) => {
54  console.error(`Job ${job.id} failed with error: ${err.message}`);
55});

4. Otimização do servidor

Modo de cluster:

1const cluster = require('cluster');
2const os = require('os');
3const express = require('express');
4
5if (cluster.isMaster) {
6  // Get the number of available CPU cores
7  const numCPUs = os.cpus().length;
8  
9  console.log(`Master process running. Forking ${numCPUs} workers`);
10  
11  // Fork workers for each available CPU
12  for (let i = 0; i < numCPUs; i++) {
13    cluster.fork();
14  }
15  
16  // Handle worker crashes
17  cluster.on('exit', (worker, code, signal) => {
18    console.log(`Worker ${worker.process.pid} died. Restarting...`);
19    cluster.fork();
20  });
21} else {
22  // Worker processes share the same port
23  const app = express();
24  
25  // Your Express routes and middleware here
26  app.get('/', (req, res) => {
27    res.send('Hello from worker ' + process.pid);
28  });
29  
30  const PORT = process.env.PORT || 3000;
31  app.listen(PORT, () => {
32    console.log(`Worker ${process.pid} started and listening on port ${PORT}`);
33  });
34}

Usando o PM2:

1// app.js - Your Express application
2const express = require('express');
3const app = express();
4
5// Routes and middleware here
6
7const PORT = process.env.PORT || 3000;
8app.listen(PORT, () => {
9  console.log(`Server running on port ${PORT}`);
10});
11
12// ecosystem.config.js - PM2 configuration
13module.exports = {
14  apps: [{
15    name: "api-server",
16    script: "./app.js",
17    instances: "max", // Use all available CPUs
18    exec_mode: "cluster",
19    watch: false,
20    max_memory_restart: "1G",
21    env: {
22      NODE_ENV: "production",
23      PORT: 3000
24    }
25  }]
26};
27
28// Run with: pm2 start ecosystem.config.js

5. Compressão de resposta

1const express = require('express');
2const compression = require('compression');
3const app = express();
4
5// Add compression middleware
6app.use(compression({
7  level: 6, // Default compression level
8  threshold: 1024, // Only compress responses larger than 1KB
9  filter: (req, res) => {
10    // Don't compress responses with this header
11    if (req.headers['x-no-compression']) {
12      return false;
13    }
14    // Use compression filter function from the module
15    return compression.filter(req, res);
16  }
17}));
18
19// Your routes here

6. Pooling de conexões

1// For MongoDB with Mongoose
2mongoose.connect('mongodb://localhost/myapp', {
3  poolSize: 10, // Maintain up to 10 socket connections
4  serverSelectionTimeoutMS: 5000,
5  socketTimeoutMS: 45000
6});
7
8// For PostgreSQL with pg
9const { Pool } = require('pg');
10const pool = new Pool({
11  host: 'localhost',
12  database: 'myapp',
13  user: 'postgres',
14  password: 'password',
15  max: 20, // Maximum number of clients in the pool
16  idleTimeoutMillis: 30000,
17  connectionTimeoutMillis: 2000
18});
19
20// Use the pool in your routes
21app.get('/api/data', async (req, res) => {
22  const client = await pool.connect();
23  try {
24    const result = await client.query('SELECT * FROM items');
25    res.json(result.rows);
26  } finally {
27    client.release(); // Return client to pool
28  }
29});

7. Limitação de taxa

1const rateLimit = require('express-rate-limit');
2
3// Create rate limiter
4const apiLimiter = rateLimit({
5  windowMs: 15 * 60 * 1000, // 15 minutes
6  max: 100, // Limit each IP to 100 requests per windowMs
7  standardHeaders: true, // Return rate limit info in the `RateLimit-*` headers
8  legacyHeaders: false, // Disable the `X-RateLimit-*` headers
9  message: 'Too many requests from this IP, please try again after 15 minutes'
10});
11
12// Apply rate limiting to all API routes
13app.use('/api/', apiLimiter);
14
15// Different limits for specific endpoints
16const createAccountLimiter = rateLimit({
17  windowMs: 60 * 60 * 1000, // 1 hour
18  max: 5, // 5 accounts per hour per IP
19  message: 'Too many accounts created from this IP, please try again after an hour'
20});
21
22app.post('/api/create-account', createAccountLimiter, (req, res) => {
23  // Create account logic
24});

8. Monitoramento e ajuste de desempenho

1const express = require('express');
2const responseTime = require('response-time');
3const app = express();
4
5// Add response time header
6app.use(responseTime());
7
8// Basic request logging
9app.use((req, res, next) => {
10  const start = Date.now();
11  
12  res.on('finish', () => {
13    const duration = Date.now() - start;
14    console.log(`${req.method} ${req.originalUrl} ${res.statusCode} ${duration}ms`);
15  });
16  
17  next();
18});
19
20// For more advanced monitoring, consider using:
21// - Prometheus + Grafana
22// - New Relic
23// - Datadog

Ao implementar essas otimizações, sua API Node.js Express deve estar bem equipada para lidar com 1.000 RPS. Lembre-se de:

  1. Crie um perfil de seu aplicativo para identificar gargalos
  2. Implemente o armazenamento em cache estrategicamente para dados acessados com frequência
  3. Use índices de banco de dados para padrões de consulta comuns
  4. Transfira tarefas intensivas de CPU para funcionários em segundo plano
  5. Dimensione horizontalmente usando agrupamento ou orquestração de contêineres
  6. Monitore o desempenho na produção para otimizar continuamente

Explore os casos de uso relacionados

Experimente o assistente de IA do Ninja

Experimente gratuitamente hoje mesmo. Planos a partir de $19/mês.